checket by H on 8/15/16

CETIFICATION

SDG No:

MC46976

Laboratory:

Accutest, Massachusetts

Site:

BMSMC, Phase 2A Release

Matrix:

Groundwater

Assessment, Humacao, PR

Humacao, PR

SUMMARY:

Groundwater samples (Table 1) were collected on the BMSMC facility – Phase 2A Release Assessment Area. The BMSMC facility is located in Humacao, PR. Samples were taken July 20-22, 2016 and were analyzed in Accutest Laboratory of Marlborough, Massachusetts that reported the data under SDG No.: MC46976. Results were validated using the following quality control criteria of the methods employed (MAPED EPH, Massachusets Department of Environmental Protection, 2004) and the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. The data sample organic data samples summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

SAMPLE ID	SAMPLE	MATRIX	ANALYSIS PERFORMED
	DESCRIPTION		
MC46976-1	OSGP13-GWD	Groundwater	Extractable TPHC Ranges
MC46976-2	OSGP13-GWS	Groundwater	Extractable TPHC Ranges
MC46976-2D	OSGP13-GWS MSD	Groundwater	Extractable TPHC Ranges
MC46976-2S	OSGP13-GWS MS	Groundwater	Extractable TPHC Ranges
MC46976-3	OSGP14-GWD	Groundwater	Extractable TPHC Ranges
MC46976-4	BPEB-14	AQ – Equipment	Extractable TPHC Ranges
		Blank	_

LIC #

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

August 9, 2016

Report of Analysis

Page 1 of 1

ole ID; MC4	6976-1			D	ate Sampled:	07/20/16
-				D	ate Received:	07/23/16
MAD	EP EPH R	EV 1.1 SW846	3510C	Po	ercent Solids:	n/a
BMS	MC Phase 2	2A Release Asse	ssment, F	łumacao, PR		
File ID	DF	Analyzed	Ву	Prep Date	Prep Batc	h Analytical Batch
DE14999.D	1	07/28/16	TA	07/25/16	OP48258	GDE835
	ole ID: MC46 AQ - MAD BMS1	AQ - Ground W. MADEP EPH R BMSMC Phase 2	AQ - Ground Water MADEP EPH REV 1.1 SW846 BMSMC Phase 2A Release Asse	AQ - Ground Water MADEP EPH REV 1.1 SW846 3510C BMSMC Phase 2A Release Assessment, F	AQ - Ground Water MADEP EPH REV 1.1 SW846 3510C BMSMC Phase 2A Release Assessment, Humacao, PR File ID DF Analyzed By Prep Date	AQ - Ground Water MADEP EPH REV 1.1 SW846 3510C BMSMC Phase 2A Release Assessment, Humacao, PR Prep Bate Prep Bate

	Initial Volume	Final Volume		
Run #1	880 ml	2.0 ml		
Run #2				

CAS No.	Compound	Result	RL	MDL	Units	Q
83-32-9	Acenaphthene	ND	5.7	1.8	ug/l	
208-96-8	Acenaphthylene	ND	5.7	0.40	ug/l	
120-12-7	Anthracene	ND	5.7	0.66	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.7	0.34	ug/l	
50-32-8	Вепго(а)ругепе	ND	5.7	0.33	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	5.7	0.51	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	5.7	0.42	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	5.7	0.40	ug/l	
218-01-9	Chrysene	ND	5.7	0.49	ug/l	
53-70-3	Dibenz(a,h)anthracene	ND	5.7	0.44	ug/l	
206-44-0	Fluoranthene	ND	5.7	0.38	ug/l	
86-73-7	Fluorene	ND	5.7	0.45	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.7	0.33	ug/l	
91-57-6	2-Methylnaphthalene	0.67	5.7	0.51	ug/l	j
91-20-3	Naphthalene	1.5	5.7	1.1	ug/l	J
85-01-8	Phenanthrene	ND	5.7	0.35	ug/l	
129-00-0	Pyrene	ND	5.7	0.68	ug/l	
	C11-C22 Aromatics (Unadj.)	44.9	110	33	ug/l	JB
	C9-C18 Aliphatics	ND	110	19	ug/l	
	C19-C36 Aliphatics	ND	110	31	ug/l	
	C11-C22 Aromatics	42.7	110	33	ug/l	JB
					_	

CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
84-15-1	o-Terphenyl	61%		40-140%
321-60-8	2-Fluorobiphenyl	67%		40-140%
3386-33-2	1-Chlorooctadecane	44%		40-140%
580-13-2	2-Bromonaphthalene	76%		40-140%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Run #1

890 ml

Report of Analysis

Page 1 of 1

Client Sample ID:	OSGP13-GWS			
Lab Sample ID:	MC46976-2		Date Sampled:	07/21/16
Matrix:	AQ - Ground Water		Date Received:	07/23/16
Method:	MADEP EPH REV 1.1	SW846 3510C	Percent Solids	n/a

Project: BMSMC Phase 2A Release Assessment, Humacao, PR

Initial Volume Final Volume

2.0 ml

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	DE15000.D	1	07/28/16	TA	07/25/16	OP48258	GDE835
Run #2							

Run #2	7.311					
CAS No.	Compound	Result	RL	MDL	Units	Q
83-32-9	Acenaphthene	ND	5.6	1.8	ug/l	
208-96-8	Acenaphthylene	ND	5.6	0.40	ug/l	
120-12-7	Anthracene	ND	5.6	0.65	ug/I	
56-55-3	Benzo(a)anthracene	ND	5.6	0.34	ug/l	
50-32-8	Benzo(a)pyrene	ND	5.6	0.33	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	5.6	0.50	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	5.6	0.42	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	5.6	0.40	ug/l	
218-01-9	Chrysene	ND	5.6	0.49	ug/l	
53-70-3	Dibenz(a,h)anthracene	ND	5.6	0.44	ug/l	
206-44-0	Fluoranthene	ND	5.6	0.38	ug/l	
86-73-7	Fluorene	ND	5.6	0.45	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.6	0.33	ug/l	
91-57-6	2-Methylnaphthalene	ND	5.6	0.51	ug/l	
91-20-3	Naphthalene	1.1	5.6	1.1	ug/l	J
85-01 - 8	Phenanthrene	ND	5.6	0.34	ug/l	
129-00-0	Pyrene	ND	5.6	0.67	ug/l	
	C11-C22 Aromatics (Unadj.)	38.5	110	32	ug/l	JB
	C9-C18 Aliphatics	ND	110	19	ug/l	-
	C19-C36 Aliphatics	ND	110	30	ug/l	
	C11-C22 Aromatics	37.0	110	32	ug/l	JB
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B \,=\, Indicates \,\, analyte \,\, found \,\, in \,\, associated \,\, method \,\, blank$

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID:	OSGP14-GWD
Lab Sample ID:	MC46976-3
Matrix:	AQ - Ground V

740 ml

AQ - Ground Water

2.0 ml

Initial Volume Final Volume

Date Sampled: 07/21/16 Date Received: 07/23/16

Method:

Run #1

Run #2

MADEP EPH REV 1.1 SW846 3510C

Percent Solids: n/a

Project: BMSMC Phase 2A Release Assessment, Humacao, PR

Run #1	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #2	DE15001.D	1	07/28/16	TA	07/25/16	OP48258	GDE835

CAS No.	Compound	Result	RL	MDL	Units	Q
208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 91-57-6 91-20-3 85-01-8 129-00-0	Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene C11-C22 Aromatics (Unadj.)	ND N	6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8	2.1 0.48 0.78 0.41 0.39 0.60 0.50 0.48 0.52 0.45 0.54 0.40 0.61 1.3 0.41 0.81	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	Q J JB
	C9-C18 Aliphatics C19-C36 Aliphatics	ND 64.5	140	23 37	ug/l ug/l	J
	C11-C22 Aromatics	57.6	140	39	ug/l	JB

CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
84-15-1	o-Terphenyl	50%		40-140%
321-60-8	2-Fluorobiphenyl	67%		40-140%
3386-33-2	1-Chlorooctadecane	40%		40-140%
580-13-2	2-Bromonaphthalene	63%		40-140%

ND = Not detected RL = Reporting Limit MDL = Method Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID:	BPEB-14
Lab Sample ID:	MC46976-4
9.6	

AQ - Equipment Blank

Date Sampled: 07/22/16 Date Received: 07/23/16

Matrix: Method:

MADEP EPH REV 1.1 SW846 3510C

Percent Solids: n/a

Project:

BMSMC Phase 2A Release Assessment, Humacao, PR

Run #1	File ID	DF	Analyzed 07/28/16	By	Prep Date	Prep Batch	Analytical Batch
Run #2	DE15002.D	1		TA	07/25/16	OP48258	GDE835
Kun #Z							

	Initial Volume	Final Volume
Run #1	920 ml	2.0 ml
Run #2		

CAS No.	Compound	Result	RL	MDL	Units	Q
83-32-9	Acenaphthene	ND	5.4	1.7	ug/l	
208-96-8	Acenaphthylene	ND	5.4	0.39	ug/l	
120-12-7	Anthracene	ND	5.4	0.63	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.4	0.33	ug/l	
50-32-8	Benzo(a)pyrene	ND	5.4	0.32	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	5.4	0.49	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	5.4	0.40	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	5.4	0.38	ug/l	
218-01-9	Chrysene	ND	5.4	0.47	ug/l	
53-70-3	Dibenz(a,h)anthracene	ND	5.4	0.42	ug/I	
206-44-0	Fluoranthene	ND	5.4	0.36	ug/l	
86-73-7	Fluorene	ND	5.4	0.43	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.4	0.32	ug/l	
91-57-6	2-Methylnaphthalene	0.60	5.4	0.49	ug/l	j
91-20-3	Naphthalene	1.4	5.4	1.0	ug/l	J
85-01-8	Phenanthrene	ND	5.4	0.33	ug/l	
129-00-0	Pyrene	ND	5.4	0.65	ug/I	
	C11-C22 Aromatics (Unadj.)	42.3	110	31	ug/l	JB
	C9-C18 Aliphatics	ND	110	18	ug/l	_
	C19-C36 Aliphatics	ND	110	29	ug/l	
	C11-C22 Aromatics	39.8	110	31	ug/l	JB
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	

CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
84-15-1	o-Terphenyl	71%		40-140%
321-60-8	2-Fluorobiphenyl	76%		40-140%
3386-33-2	1-Chlorooctadecane	45%		40-140%
580-13-2	2-Bromonaphthalene	84%		40-140%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

321-60-8

580-13-2

Page 1 of 1

Method: MADEP EPH REV 1.1

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: MC46976

Account: AMANYWP Anderson Mulholland and Assoc.

Project: BMSMC Phase 2A Release Assessment, Humacao, PR

\$40.46076 2 0-H--

76%

58%

75%

68%

50%

67%

69%

55%

75%

The QC reported here applies to the following samples:

MC46976-1, MC46976-2, MC46976-3, MC46976-4

		MC4697	5-2	Spike	MS	MS	Spike	MSD	MSD		Limits
CAS No.	Compound	ug/l	Q	ug/l	ug/l	%	ug/l	ug/l	%	RPD	Rcc/RPD
83-32-9	Acenaphthene	ND		56.2	35.6	63	56.8	34.7	61	3	40-140/25
208-96-8	Acenaphthylene	ND		56.2	33.7	60	56.8	31.9	56	5	40-140/25
120-12-7	Anthracene	ND		56.2	36.6	65	56.8	35.2	62	4	40-140/25
56-55-3	Benzo(a)anthracene	ND		56.2	40.7	72	56.8	39.8	70	2	40-140/25
50-32-8	Benzo(a)pyrene	ND		56.2	42.8	76	56.8	41.5	73	3	40-140/25
205-99-2	Benzo(b)fluoranthene	ND		56.2	43.1	77	56.8	41.9	74	3	40-140/25
191-24-2	Benzo(g,h,i)perylene	ND		56.2	44.4	79	56.8	42.8	75	4	40-140/25
207-08-9	Benzo(k)fluoranthene	ND		56.2	40.3	72	56.8	39.1	69	3	40-140/25
218-01-9	Chrysene	ND		56.2	42.0	75	56.8	40.3	71	4	40-140/25
53-70-3	Dibenz(a,h)anthracene	ND		56.2	45.4	81	56.8	44.1	78	3	40-140/25
206-44-0	Fluoranthene	ND		56.2	39.7	71	56.8	38.3	67	4	40-140/25
86-73-7	Fluorene	ND		56.2	34.6	62	56.8	33.1	58	4	40-140/25
193-39-5	Indeno(1,2,3-cd)pyrene	ND		56.2	42.2	75	56.8	41.5	73	2	40-140/25
91-57-6	2-Methylnaphthalene	ND		56.2	31.9	57	56.8	30.7	54	4	40-140/25
91-20-3	Naphthalene	1.1	J	56.2	32.4	56	56.8	31.0	53	4	40-140/25
85-01-8	Phenanthrene	ND		56.2	35.7	64	56.8	34.0	60	5	40-140/25
129-00-0	Pyrene	ND		56.2	39.9	71	56.8	37.9	67	5	40-140/25
	C11-C22 Aromatics (Unadj.)	38.5	JB	899	740	78	909	709	74	4	40-140/25
	C9-C18 Aliphatics	ND		337	255	76	341	244	72	4	40-140/25
	C19-C36 Aliphatics	ND		449	408	91	455	401	88	2	40-140/25
CAS No.	Surrogate Recoveries	MS		MSD	М	C46976-2	Limits				
84-15-1	o-Terphenyl	70%		71%	679	%	40-1409	6		00140	

40-140%

40-140%

40-140%

2-Fluorobiphenyl

2-Bromonaphthalene

3386-33-2 1-Chlorooctadecane

^{* =} Outside of Control Limits.

8	ACCUTEST				CHAI	N (OF (CUS	то	D	?				•••	a n				5.2		P	AGE	=4		
S	NE				SO D'Angelo D TEL, SI	6-481-42	g One, M	108-461	ii, MA -7753	22710				Þ			LO5	PCI	936	_	_		* £	M		6976
	Client / Reporting Information				Project	Inform		1	GES.	1 7		1000		100	200	Rec	-	d And	dvels	f see 1			Euhoo		1	Matrix Codes
Сенци	pay Algeria		Project Name:											П			П	П		1	П	Т	T	T	Г	
Ander	rson Mulholland & Associates		BMSMC Pha	oo 2A Finlanso	Assesmen									- 1			l	1			ı			1	ŀ	OW - Criming Wests OW - Ground Wass
Sept. 1	Address		Simple				in facility in the	-	متعلن	reflected.	- DOG-74	-976	- 85 N	- 4	- 1		ı		1	ı	1	i i	1			WW-Water
	Wegtchester Avenue, Suite 417					-		[T 45	brant f	rian R	sport t				s۱			ŀ	1			1	1			SW - Stations Water SO - Sed
Chy		Žp.	Cay		PR	Campar	A spinner								픫				1	1		1		1		SL-Sheige SEX-Seekmant
Purch	NOSO NY	10677 E-trad	Humecao Press 8		PR	Street A	- Children							\dashv	¥		ļ	1	ľ	ı						DI-DI
Ter	ny Taylor		021											- 1	ॿ ।			l		ŀ		l	1	1		UG-Other Liquid ARI - Air
Press		Facility	Chart Purchase	Order #		Oy .			_				Zp	-1	킬				Į.	l	l	1		1		SOL - Other Sales WP - Wipe
	F-281-0400														휥ㅣ						l	1				FB-Field Blank CB-Commont Blank
1	micha Minimodua	Phone 6	Propert Manage	,		Amerika	¥ .								Arometica]		ı				PSS- Pares (Barris
N. F	Rivera, R. Stuert, R. C'Reilly, T. Tø	ylor	Terry Taylor		Coloche	Щ.		_	_							I		l						1	'	TS-Trip (Sees).
1	ľ								H		7-0-10-0	L	10	ન	ë	E.	i .	[1		l i	ı		'		
===	Field ID / Point of Collection		ARCHONOLINA A	Date		<u></u> -			9	ij	줐	Ì	8 8		÷	BIKA			1	1		l				LAR USE ONLY
7	OSGP13-6WD			7-20-16	1515	11	GW		1	+	X 3	Ħ	* *	-	렀	X	Н	\vdash	-		H	-	+	╁─┤	\vdash	DAR COSE CHILY
	OSGP 13 -GWS				1230	_		2	1	Н	+	Н	+	-	₹	Ŷ	\vdash	—	├	\vdash	-		+	┼¦	\vdash	
-4				7-21-16	-	17	GW		2	Н	+	H	+	-	_		-				\vdash	_	╀	₩	\sqcup	
لما	OSGP13 MS-G WS			7-21-16	1230	11	GW	-2	2	Ш	_	Ц	\perp	-	_	X	Ш					_	ـــــ	+	\square	
	OSGP 13 MSD-GWS			7-21-16	1230	11	CW	1	2	Ш	\perp	Ц	Ш	lere be	_	X						_	丄	Ш		31
-2	osgp / - GWD			7-21-16	1545	π	aw	2	2	IJ	_ _	L			X	X										165
									П	П		П	\top	П	Т								T			
									П	П	T	П	$\neg \neg$	П	1			-					\Box			
									T	Ħ	\top	П	77	H	\dashv								\vdash			
									\vdash	Ħ	$^{+}$	H	71	Н	7						\neg		_	\vdash		
									\top	Ħ	\top	H	77	+	+	╗	\neg					_	\vdash	\vdash	\neg	
\vdash									+	††	+	H	++	\vdash	$^{+}$	\dashv	\neg		\Box	\vdash	\neg		1	\vdash	\neg	
-V	BP 68- 14	N. Santa		7-27-14	0945	g cal	18	2	2			100	9 9	5	2	Y	in.	200			1000	950	6203	-000	PinZd	
Ebail	Testingues Think Business (1975)				(Propriet via		CO 1	-	Delive	THE R.		1000	31 7 8				and the	200	MEDICA	C		Saach	al India	1		
	Stat. 15 Charlesons Chiye		Approved By Blanc	loot (FBI)s / Chalus			_	H-Y- (L	real 1)			HEV.A	SP Cu	رددوت	A	П									_	
	Grd. 10 Business Days (by Cassinat o	1/1 .			- [,	USP CH			- }.		_	MITT	L AS				1	_	
	14 Day MUSH 1 a Day MUSH		·		- 1		VLLTY (Li Rodici		1				n Fern	_		- 1				- Pag	633	MEN	11		-	
	T 3 Day EMERCENCY	St. or o	(F)		- 1						H	000	l Porm		_	- 1			ARE	LVE	2000		DN /	-//-	_	
	Z Day CHEMOENCY 🦓	1		IIE:	ľ			Campage	d'A'-	-	است. ۱۳۵۷ و										wriG	~11(M		-	
_ E] 1 Day EMERSENCY (37.47	<u></u>	J			A.J. Plantuck			- 00					ſ					_					,
200 PM	A THE RESIDENCE TO SHARE		Sac	epis Cuntarly on	of he desprise	wheel he					o pos						lottvary	r.	10.	1	MAS.	Shylli		300	Time!	
. ***	10 8 46	7-22-1	1700		JEX				-	-	je.	Ė		2				,/,,	-7.		-	Bye	Net	U,	, '	
<u>. </u>	ather by Sangton	One Place	-	1 (~ C Received fly:	V 5-1				7			F	C. O	¥			$-\ell$	(/24	ΥΙΚ		2			_L		
3		Com These		3				[•												1	_				
	stated by:	ramà Viliaje		Santond Syc					28	7, 7	83	<u> </u>		1	-					-			7	2-		٥

MC46976: Chain of Custody
Page 1 of 2

EXECUTIVE NARRATIVE

SDG No:

MC46976

Laboratory: A

Accutest, Massachusetts

Analysis:

MADEP EPH

Number of Samples: 6

Location:

BMSMC, Phase 2A Release Assessment Area

Humacao, PR

SUMMARY:

Six (6) samples were analyzed for Volatiles TPHC Ranges by method MADEP EPH. Samples were validated following the METHOD FOR THE DETERMINATION OF EXTRACTABLE PETROLEUM HYDROCARBONS (EPH) quality control criteria, Massachusetts Department of Environmental Protection, Revision 1.1 (2004). Also the general validation guidelines promulgated by the USEPA Hazardous Wastes Support Section. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

1. Analytes detected in method blank at a concentration below the reporting limits. Analytes detected in sample batch above MDL but below the reporting limits. Laboratory qualified the results as JB, no further

qualification required.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

August 9, 2016

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: MC46976-1

Sample location: BMSMC Phase 2A Release Assessment, Humacao, PR

Sampling date: 7/20/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Acenaphthene	5.7	ug/l	1	-	U	Yes
Acenaphthylene	5.7	ug/l	1	-	U	Yes
Anthracene	5.7	ug/l	1	-	U	Yes
Benzo(a)anthracene	5.7	ug/l	1	-	U	Yes
Benzo(a)pyrene	5.7	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	5.7	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	5.7	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	5.7	ug/l	1	-	U	Yes
Chrysene	5.7	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	5.7	ug/l	1	-	U	Yes
Fluoranthene	5.7	ug/l	1	-	U	Yes
Fluorene	5.7	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	5.7	ug/l	1	-	U	Yes
2-Methylnaphthalene	0.67	ug/l	1	J	J	Yes
Naphthalene	1.5	ug/l	1	J	1	Yes
Phenanthrene	5.7	ug/l	1	-	U	Yes
Pyrene	5.7	ug/l	1	-	U	Yes
C11-C22 Aromatics (Unadj.)	44.9	ug/l	1	JB	JB	Yes
C9-C18 Aliphatics	110	ug/l	1	-	U	Yes
C19-C36 Aliphatics	110	ug/l	1	-	U	Yes
C11-C22 Aromatics	42.7	ug/l	1	JB	JB	Yes

Sample ID: MC46976-2

Sample location: BMSMC Phase 2A Release Assessment, Humacao, PR

Sampling date: 7/21/2016

Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Acenaphthene	5.6	ug/l	1	-	U	Yes
Acenaphthylene	5.6	ug/l	1	-	U	Yes
Anthracene	5.6	ug/l	1	-	U	Yes
Benzo(a)anthracene	5.6	ug/l	1	-	U	Yes
Benzo(a)pyrene	5.6	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	5.6	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	5.6	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	5.6	ug/l	1	-	U	Yes
Chrysene	5.6	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	5.6	ug/l	1	-	U	Yes
Fluoranthene	5.6	ug/l	1	-	U	Yes
Fluorene	5.6	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	5.6	ug/l	1	-	U	Yes
2-Methylnaphthalene	5.6	ug/l	1	-	U	Yes
Naphthalene	1.1	ug/l	1	J	J	Yes
Phenanthrene	5.6	ug/l	1	-	U	Yes
Pyrene	5.6	ug/l	1	-	U	Yes
C11-C22 Aromatics (Unadj.)	38.5	ug/l	1	JB	JB	Yes
C9-C18 Aliphatics	110	ug/l	1	-	U	Yes
C19-C36 Aliphatics	110	ug/l	1	-	U	Yes
C11-C22 Aromatics	37.0	ug/l	1	JB	JB	Yes

Sample ID: MC46976-3

Sample location: BMSMC Phase 2A Release Assessment, Humacao, PR

Sampling date: 7/21/2016 Matrix: Groundwater

A 1 . M	5					
Analyte Name	Result		Dilution Factor	Lab Flag	Validation	Reportable
Acenaphthene	6.8	ug/l	1	-	U	Yes
Acenaphthylene	6.8	ug/l	1	-	U	Yes
Anthracene	6.8	ug/l	1	-	U	Yes
Benzo(a)anthracene	6.8	ug/l	1	-	U	Yes
Benzo(a)pyrene	6.8	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	6.8	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	6.8	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	6.8	ug/l	1	-	U	Yes
Chrysene	6.8	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	6.8	ug/l	1	-	U	Yes
Fluoranthene	6.8	ug/l	1	-	U	Yes
Fluorene	6.8	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	6.8	ug/l	1	-	U	Yes
2-Methylnaphthalene	0.70	ug/l	1	J	j	Yes
Naphthalene	1.4	ug/l	1	J	J	Yes
Phenanthrene	6.8	ug/l	1	-	U	Yes
Pyrene	6.8	ug/i	1	-	U	Yes
C11-C22 Aromatics (Unadj.)	60.3	ug/l	1	JB	JB	Yes
C9-C18 Aliphatics	140	ug/l	1	-	U	Yes
C19-C36 Aliphatics	140	ug/l	1	-	U	Yes
C11-C22 Aromatics	57.6	ug/l	1	JB	JB	Yes

Sample ID: MC46976-4

Sample location: BMSMC Phase 2A Release Assessment, Humacao, PR

Sampling date: 7/22/2016

Matrix: AQ - Equipment Blank

Analyte Name	Result	Units i	Dilution Factor	Lab Flag	Validation	Reportable
Acenaphthene	5.4	ug/l	1	-	U	Yes
Acenaphthylene	5.4	ug/l	1	-	U	Yes
Anthracene	5.4	ug/l	1	-	U	Yes
Benzo(a)anthracene	5.4	ug/l	1	-	U	Yes
Benzo(a)pyrene	5.4	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	5.4	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	5.4	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	5.4	ug/l	1	-	U	Yes
Chrysene	5.4	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	5.4	ug/l	1	-	U	Yes
Fluoranthene	5.4	ug/l	1	-	U	Yes
Fluorene	5.4	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	5.4	ug/l	1	-	U	Yes
2-Methylnaphthalene	0.60	ug/l	1	J	Ţ	Yes
Naphthalene	1.4	ug/l	1	J	J	Yes
Phenanthrene	5.4	ug/l	1	-	U	Yes
Pyrene	5.4	ug/l	1	-	U	Yes
C11-C22 Aromatics (Unadj.)	42.3	ug/l	1	JB	JB	Yes
C9-C18 Aliphatics	110	ug/l	1	-	U	Yes
C19-C36 Aliphatics	110	ug/l	1	-	U	Yes
C11-C22 Aromatics	39.8	ug/l	1	JB	JB	Yes

Sample ID: MC46976-2MS

Sample location: BMSMC Phase 2A Release Assessment, Humacao, PR

Sampling date: 7/21/2016 Matrix: Groundwater

4 . . .

WETTOD.	22700					
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Acenaphthene	35.6	ug/l	1	-	-	Yes
Acenaphthylene	33.7	ug/l	1	-	-	Yes
Anthracene	36.6	ug/l	1	-	-	Yes
Benzo(a)anthracene	40.7	ug/l	1	-	-	Yes
Benzo(a)pyrene	42.8	ug/l	1	-	-	Yes
Benzo(b)fluoranthene	43.1	ug/l	1	-	-	Yes
Benzo(g,h,i)perylene	44.4	ug/l	1	-	-	Yes
Benzo(k)fluoranthene	40.3	ug/l	1	-	-	Yes
Chrysene	42.0	ug/l	1	-	-	Yes
Dibenzo(a,h)anthracene	45.4	ug/l	1	-	-	Yes
Fluoranthene	39.7	ug/l	1	-	-	Yes
Fluorene	34.6	ug/i	1	-	-	Yes
Indeno(1,2,3-cd)pyrene	42.2	ug/l	1	-		Yes
2-Methylnaphthalene	31.9	ug/l	1	-	-	Yes
Naphthalene	32.4	ug/l	1	-	-	Yes
Phenanthrene	35.7	ug/i	1	-	-	Yes
Pyrene	39.9	ug/l	1	-	-	Yes
C11-C22 Aromatics (Unadj.)	740	ug/l	1	-	-	Yes
C9-C18 Aliphatics	337	ug/l	1	-	-	Yes
C19-C36 Aliphatics	449	ug/l	1	_	-	Yes

Sample ID: MC46976-2MSD

Sample location: BMSMC Phase 2A Release Assessment, Humacao, PR

Sampling date: 7/21/2016 Matrix: Groundwater

. . . .

WETTOD.	12/00					
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Acenaphthene	34.7	ug/l	1	-	-	Yes
Acenaphthylene	31.9	ug/l	1		-	Yes
Anthracene	35.2	ug/l	1	-	-	Yes
Benzo(a)anthracene	39.8	ug/l	1	~	-	Yes
Benzo(a)pyrene	41.5	ug/l	1	-	-	Yes
Benzo(b)fluoranthene	41.9	ug/l	1	-	-	Yes
Benzo(g,h,i)perylene	42.8	ug/i	1	-	-	Yes
Benzo(k)fluoranthene	39.1	ug/l	1	-	-	Yes
Chrysene	40.3	ug/l	1	-	9	Yes
Dibenzo(a,h)anthracene	44.1	ug/l	1	-	-	Yes
Fluoranthene	38.3	ug/l	1	75	-	Yes
Fluorene	33.1	ug/l	1	-	2	Yes
Indeno(1,2,3-cd)pyrene	41.5	ug/l	1	-	-	Yes
2-Methylnaphthalene	30.7	ug/l	1	75	-	Yes
Naphthalene	31.0	ug/l	1	-	-	Yes
Phenanthrene	34.0	ug/l	1	-	-	Yes
Pyrene	37.9	ug/l	1	-	-	Yes
C11-C22 Aromatics (Unadj.)	70 9	ug/l	1	-	-	Yes
C9-C18 Aliphatics	244	ug/l	1	•	-	Yes
C19-C36 Aliphatics	401	ug/l	1	•	-	Yes

DATA REVIEW WORKSHEETS

Project Number:_MC46976
EUM HYDROCARBON (EPHs) PACKAGE
le organics were created to delineate required reviewer in using professional judgment to make he needs of the data users. The sample results in guidance documents in the following order of MINATION OF EXTRACTABLE PETROLEUM artment of Environmental Protection, Revision 1.1 promulgated by the USEPA Hazardous Wastes ation actions listed on the data review worksheets to otherwise noted.
t_Laboratories data package trol and performance data summarized. The data
Sample matrix: _Groundwater
X_ Laboratory Control SpikesX_ Field DuplicatesX_ CalibrationsX_ Compound IdentificationsX_ Compound QuantitationX_ Quantitation Limits
Comments: by_Method_MADEP_EPH,_REV_1.1s)

		Criteria were not n	All criteria were metx Criteria were not met and/or see below			
	ATA COMPLETNE Data Packag					
MISSING	INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED			
	Since.					
B. Ot	her		Discrepancies:			
	2 10 10 10 10					

All criteria were met	X
Criteria were not met and/or see below	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of extraction, and subsequently from the time of extraction to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE	DATE	DATE	ACTION
	SAMPLED	EXTRACTED	ANALYZED	
Samples	extracted and an	alyzed within met	hod recommende	d holding time.
		1	-	

Criteria

Preservation:

Aqueous samples must be acidified to a pH of 2.0 or less at the time of collection.

Soil samples must be cooled at 4 ± 2 °C immediately after collection.

Holding times:

Samples must be extracted within 14 days of collection, and analyzed within 40 days of extraction.

Cooler temperature	(Criteria: 4 ±	2 °C): 2°C	
--------------------	----------------	------	--------	--

Actions: Qualify positive results/nondetects as follows:

If holding times are exceeded, estimate positive results (J) and nondetects (UJ). If holding times are grossly exceeded, use professional judgment to qualify data. The data reviewer may choose to estimate positive results (J) and rejects nondetects (R). If samples were not at the proper temperature (> 10°C) or improperly preserved, use professional judgment to qualify the results.

		Crite	All criteria eria were not met and/	a were metX or see below		
CALIBRAT	IONS VERIFIC	ATION				
	at the instrum		nstrument calibration producing and mai			
Date	Date of initial calibration:06/22/16					
Dat	es of initial cali	bration verification:_	06/22/13			
Inst	rument ID num	bers:GCD	E			
Mat	rix/Level:	_AQUEOUS/MEDIUI	M			
DATE	LAB FILE ID#	ANALYTE	CRITERIA OUT RFs, %RSD, %D, r	SAMPLES AFFECTED		
Initia	al and initial ca	libration verification r	neet method specific r	equirements.		

Criteria- ICAL

- Five point calibration curve.
- The percent relative standard deviation (%RSD) of the calibration factor must be
 equal to or less than 25% over the working range for the analyte of interest.
 When this condition is met, linearity through the origin may be assumed, and the
 average calibration factor is used in lieu of a calibration curve.
- A collective calibration factor must also be established for each hydrocarbon range of interest. Calculate the collective CFs for C9-C18 Aliphatic Hydrocarbons, C19-C36 Aliphatic Hydrocarbons, and C11-C22 Aromatic Hydrocarbons using the FID chromatogram. Tabulate the summation of the peak areas of all components in that fraction against the total concentration injected. The %RSD of the calibration factor must be equal to or less than 25% over the working range for the hydrocarbon range of interest.
 - o The area for the surrogates must be subtracted from the area summation of the range in which they elute.
 - The areas associated with naphthalene and 2-methylnaphthalene in the aliphatic range standard must be subtracted from the uncorrected collective C9-C18 Aliphatic Hydrocarbon range area prior to calculating the CF.

DATA REVIEW WORKSHEETS

Criteria- CCAL

- At a minimum, the working calibration factor must be verified on each working day, after every 20 samples or every 24 hours (whichever is more frequent), and at the end of the analytical sequence by the injection of a mid-level continuing calibration standard to verify instrument performance and linearity.
- If the percent difference (%D) for any analyte varies from the predicted response by more than ±25%, a new five-point calibration must be performed for that analyte. Greater percent differences are permissible for n-nonane. If the %D for n-nonane is greater than 30, note the nonconformance in the case narrative. It should be noted that the %Ds are calculated when CFs are used for the initial calibration and percent drifts are calculated when calibration curves using linear regression are used for the initial calibration.

Actions:

If %RSD > 25% for target compounds or a correlation coefficient < 0.99, estimate positive results (J) and use professional judgment to qualify nondetects. If % D > 25% (> 30 for nonane), estimate positive results (J) and nondetects (UJ).

CALIBRATIONS VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	_06/22/16
Dates of continuing calibration verification:	_07/28/16
Dates of final calibration verification:	_07/28/16
Instrument ID numbers:GCDE	
Matrix/Level:_SOIL/AQUEOUS/MEDIUM	

DATE	LAB FILE	ANALYTE	CRITERIA OUT	SAMPLES				
	ID#		RFs, %RSD, %D, r	AFFECTED				
	Initial and continuing calibration meet method specific requirements							

A separate worksheet should be filled for each initial curve

		С	riteria were not m	All criteria were met et and/or see below)	_
VA. BLANK	CANALYSIS RE	ESULTS (Se	ctions 1 & 2)		
magnitude of a blanks associal problems with evaluated to concase, or if the Method Blank	contamination pated with the san any blanks expended the san blanks expended to the san and the san an	oroblems. The amples, inclusions, inclusions, inclusions, inclusions, including the content of the ample after sample	e criteria for evaluding trip, equipmon associated with ere is an inherent urrence not affects suspected of be	etermine the existence uation of blanks apply on ent, and laboratory blank the case must be care variability in the data for thing other data. A Laborateing highly contaminate	ily to ks. If efully r the atory
List the contai separately.	mination in the	bianks beiov	v. High and low l	evels blanks must be tre	ated
Laboratory bla	nks				
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS	
_CASES_DES	SCRIBED_IN_T	HIS_DOCUN _Aqueous/lov	MENT vC11-C22_Aro	RITERIA_EXCEPT_IN_T matics_(Unadj.)_34.6_ug maticis33.8_ug	/1
	limits. Analytes reporting limits qualification rec	s detected i s. Laborator	in sample batch	entration below the repo above MDL but below results as JB, no ful	the
Field/Trip/ <u>Equi</u>	pment				
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS	
_THE_REPOR	T_ANALYTES_I RTING_LIMITI (AGE	NO_FIELD_/	ANALYZED_ASS	MENT_BLANK_ABOVE_ OCIATED_WITH_THIS_	
Note:					

All criteria were met _	
Criteria were not met and/or see below	Χ

V B. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. Peaks must not be detected above the Reporting Limit within the retention time window of any analyte of interest. The hydrocarbon ranges must not be detected at a concentration greater than 10% of the most stringent MCP cleanup standard. Specific actions area as follows:

If the concentration is < sample quantitation limit (SQL) and < AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but < AL, report the compound as not detected (U) at the reported concentration.

If the concentration is > AL, report the concentration unqualified.

	All criteria were met	
Criteria were	not met and/or see below	Х

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

Samples and QC shown here apply to the above method

Lab	Lab				
Sample ID	File ID	S1 a	S2 a	S3 b	S4 a
MC46976-1	DE14999.D	61	67	44	76
MC46976-2	DE15000.D	67	69	55	75
MC46976-3	DE15001.D	50	67	40	63
MC46976-4	DE15002.D	71	76	45	84
OP48258-BS	DE14994.D	83	80	60	80
OP48258-BSD	DE14995.D	66	63	66	62
OP48258-MB	DE14996.D	73	69	75	75
OP48258-MS	DE14997.D	70	76	58	75
OP48258-MSD	DE14998.D	71	68	50	67

Recovery
Limits
40-140%
40-140%
40-140%
40-140%

⁽a) Recovery from GC signal #1

(b) Recovery from GC signal #2

Note: SURROGATE STANDARDS RECOVERIES WITHIN LABORATORY CONTROL LIMITS.

It is recommended that surrogate standard recoveries be monitored and documented on a continuing basis. At a minimum, when surrogate recovery from a sample, blank, or QC sample is less than 40% or more than 140%, check calculations to locate possible errors, check the fortifying standard solution for degradation, and check changes in instrument performance.

DATA REVIEW WORKSHEETS

If the cause cannot be determined, reanalyze the sample unless one of the following exceptions applies:

- (1) Obvious interference is present on the chromatogram (e.g., unresolved complex mixture);
- (2) The surrogate exhibits high recovery and associated target analytes or hydrocarbon ranges are not detected in sample.

If a sample with a surrogate recovery outside of the acceptable range is not reanalyzed based on any of these aforementioned exceptions, this information must be noted on the data report form and discussed in the Executive Report. Analysis of the sample on dilution may diminish matrix-related surrogate recovery problems. This approach can be used as long as the reporting limits to evaluate applicable MCP standards can still be achieved with the dilution. If not, reanalysis without dilution must be performed.

All criteria were metX
Criteria were not met and/or see below

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples.

At the request of the data user, and in consideration of sample matrices and data quality objectives, matrix spikes and matrix duplicates may be analyzed with every batch of 20 samples or less per matrix.

- Matrix duplicate Matrix duplicates are prepared by analyzing one sample in duplicate. The purpose of the matrix duplicates is to determine the homogeneity of the sample matrix as well as analytical precision. The RPD of detected results in the matrix duplicate samples must not exceed 50 when the results are greater than 5x the reporting limit.
- The desired spiking level is 50% of the highest calibration standard. However, the total concentration in the MS (including the MS and native concentration in the unspiked sample) should not exceed 75% of the highest calibration standard in order for a proper evaluation to be performed. The purpose of the matrix spike is to determine whether the sample matrix contributes bias to the analytical results. The corrected concentrations of each analyte within the matrix spiking solution must be within 40 140% of the true value. Lower recoveries of n-nonane are permissible but must be noted in the narrative if <30%.</p>

M2/M2D Keco	venes and Precision C	ntena			
Sample ID:	JC46976-2MS/-2MS	6D		Matrix/Level:_	_Grounwater_
List the %Rs, R	PD of the compounds	which do no	t meet t	he QC criteria.	
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION
~					·
3 3 10 10 10 10 10 10	70.5 Z 2 2.00				900
					

Note: MS/MSD analyzed with this sample batch. MS/MSD % recoveries and RPD within laboratory control limits. No action taken.

			Criteria we	All criteria v ere not met and/or	vere metX see below
No action is taken of informed profession conjunction with other data. In those instantial affect only the samp However, it may be a systematic problems.	al judgment, the er QC criteria an nces where it capte of the quality of the quality of the analy	e data d dete n be ualifica gh the	reviewer r rmine the r determined tion should MS/MSD re	nay use the MS need for some qu that the results the limited to the esults that the lab	/MSD results in allification of the of the MS/MSD is sample alone. oratory is having
2. MS/MSD - U	nspiked Compou	ınds			
List the concentratio compounds in the un	ns of the unspike spiked sample, r	ed com	pounds and r	d determine the 9 matrix spike duplic	6 RSDs of these cate.
COMPOUND	CONCENTRAT SAMPLE	TON MS	MSD	%RPD	ACTION
				·····	
					
			·		
Criteria: None specifi	ed, use %RSD ≤	50 as	profession	al judgment.	
Actions:					

If the % RSD > 50, qualify the results in the spiked sample as estimate (J). If the % RSD is not calculable (NC) due to nondetect value in the sample, MS, and/or MSD, use professional judgment to qualify sample data.

A separate worksheet should be used for each MS/MSD pair.

			Criteria		criteria were metX t and/or see below
	VIII.	LABORATORY CONT	TROL SAMPLE	E (LCS/LCSD) ANALYSIS
matric		lata is generated to dete	ermine accura	cy of the anal	lytical method for various
	1.	LCS Recoveries Crite	па		
		List the %R of compo	unds which do	not meet the	criteria
LCS II	D	COMPOUND	% R	QC LIMIT	ACTION
LCS	S_REC	OVERY_WITHIN_LABO	DRATORY_CO	NTROL_LIM	TS
	_				
	Criteri	Refer to QAPP for spe The spike recovery me n-nonane are permiss	ust be between sible. If the rec	covery of n-no	10%. Lower recoveries of onane is <30%, note the PD between LCS/LCSD
		is on LCS recovery shire outside the %R and I			e number of compounds tude of the excedance of
the as If the ' for the If more qualify	sociated %R of the affected than he continued than the continued than he continued that he continued t	d samples and accept rethe analyte is < LL, quant analyte in the associated analyte in the associated the compounds in the sitive results as (J) and	nondetects. alify all positive ated samples. he LCS are no	e results (j) and the results the results (iii) and the results (iiii) and the results (iiii) and the results (iiii) and the results (iiii) and the results (iiiii) and the results (iiiiiii) and the results (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	or the affected analyte in nd reject (R) nondetects equired recovery criteria, Il target analyte(s) in the
2.	Freque	ency Criteria:			
per ma if no, t the eff	atrix)? <u>Y</u> he data ect and	<u>/es_</u> or No. a may be affected. Use	professional j	udgment to d	natrix (1 per 20 samples determine the severity of low and list the samples

		Crite	All crite eria were not met and		e metX
iX. FIELD/LAE	BORATOR	Y DUPLICATE PR	ECISION		
Sample IDs:			Matrix:		-
Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which measures only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.					
COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
No field/laboratory duplicate analyzed with this data package. MS/MSD % recovery RPD used to assess precision. RPD within laboratory and validation guidance document control limits (± 50 %) for analytes detected at a concentration > SQL.					
Criteria: The project QAPP should be reviewed for project-specific information. RPD ± 30% for aqueous samples, RPD ± 50 % for solid samples if results are ≥ SQL. If both samples and duplicate are <5 SQL, the RPD criteria is doubled. SQL = soil quantitation limit Actions:					
If both the sample	le and the	duplicate results	are nondetects (N	D), the	RPD is not

calculable (NC). No action is needed.

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria.

If one sample result is not detected and the other is $\geq 5x$ the SQL qualify (J/UJ).

Note: If SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is < 5x the SQL, use professional judgment to determine if qualification is appropriate.

All criteria were metX_	
Criteria were not met and/or see below	

XI. COMPOUND IDENTIFICATION

The compound identification evaluation is to verify that the laboratory correctly identified target analytes as well as tentatively identified compounds (TICs).

- 1. Verify that the target analytes were within the retention time windows.
 - Retention time windows must be re-established for each Target EPH Analyte each time a new GC column is installed, and must be verified and/or adjusted on a daily basis.
 - o The n-nonane (n-C9) peak must be adequately resolved from the solvent front of the chromatographic run.
 - o All surrogates must be adequately resolved from the Aliphatic Hydrocarbon and Aromatic Hydrocarbon standards.
 - o For the purposes of this method, adequate resolution is assumed to be achieved if the height of the valley between two peaks is less than 25% of the average height of the two peaks.
 - The n-pentane (C5) and MtBE peaks must be adequately resolved from any solvent front that may be present on the FID and PID chromatograms, respectively.
- 1a. Aliphatic hydrocarbons range:
 - o Determine the total area count for all peaks eluting 0.1 minutes before the retention time (Rt) for n-C9 and 0.01 minutes before the Rt for n-C19.
 - Determine the total area count for all peaks eluting 0.01 minutes before the Rt for n-C19 and 0.1 minutes after the Rt for n-C36.

Are the aliphatic hydrocarbons range properly determined?

Yes? or No?

Comments:

- 1b. Aromatic hydrocarbons range:
 - Determine the total area count for all peaks eluting 0.1 minutes before the retention time (Rt) for naphthalene and 0.1 minutes after the Rt for benzo(g,h,i)perylene.
 - Determine the peak area count for the sample surrogate (OTP) and fractionation surrogate(s). Subtract these values from the collective area count value.

Are the aliphatic hydrocarbons range properly determined?

Yes? or No?

Comments:

Comments: Not applicable.

		Criteria were	All criteria were met _ not met and/or see below	
2.	If target analytes a laboratory resubmit	and/or TICs were not corre the corrected data.	ctly identified, request the	nat the
3.	evaluated for potent % recovery of the f basis by quantifying and aromatic fraction naphthalene or 2-naphthalene total concentrations.	rmination - Each sample (fital breakthrough on a sample fractionation surrogate (2-brog naphthalene and 2-methylrons of the LCS and LCSD. nethylnaphthalene in the all ation for naphthalene or 2-tion must be repeated on a	e specific basis by evaluate monaphthalene) and on a naphthalene in both the a lif either the concentration exceeds methylnaphthalene in the specific fraction of the methylnaphthalene in the specific fraction of the speci	ting the batch liphatic tion of 5% of the LCS
	NOTE:	The total concentration methylnaphthalene in the summation of the collaboration and the aromatic fraction.	ncentration detected i	les the in the
	Comments:Conce_concentration_for_	entration_in_the_aliphatic_fra naphthalene_and_2-methyln	action_<_5%_of_the_total_ aphthalene	
4.	containing 14 alkan each constituent. The fractionation efficient optimum hexane volume allowing signification of the fractional in the fr	ck Standard – A fractional es and 17 PAHs at a nomine Fractionation Check Solution of each new lot of silical fume required to efficiently element aromatic hydrocarbon lactionation check solution, expetween 40 and 140%. A 30 octobre control of the control of th	pal concentration of 200 m on must be used to evalu- gel/cartridges, and estable lute aliphatic hydrocarbonal breakthrough. For each a excluding n-nonane, the F	ng/µl of ate the ish the s while analyte Percent
	Is a fractionation che	eck standard analyzed?	Yes? or	No?

All criteria were met	X
Criteria were not met and/or see below	

XII. QUANTITATION LIMITS AND SAMPLE RESULTS

The sample quantitation evaluation is to verify laboratory quantitation results.

In order to demonstrate the absence of aliphatic mass discrimination, the response ratio of C28 to C20 must be at least 0.85. If <0.85, this nonconformance must be noted in the laboratory case narrative.

The chromatograms of Continuing Calibration Standards for aromatics must be reviewed to ensure that there are no obvious signs of mass discrimination.

Is aliphatic mass discrimination observed in the sample?

Yes? or No?

Is aromatic mass discrimination observed in the sample?

Yes? or No?

1. In the space below, please show a minimum of one sample calculation:

MC46976-1

EPH (C11 – C22, Aromatics)

RF = 124800

[] = (2464000)/(124800)

[] = 19.74 ppb Ok

MC46976-1

EPH (C19 – C36, Aliphatics)

RF = 77820

[] = (1054863)/(77820)

[] = 13.56 ppb Ok

DATA REVIEW WORKSHEETS

- 2. If requested, verify that the results were above the laboratory method detection limit (MDLs).
- 3. If dilutions performed, were the SQLs elevated accordingly by the laboratory? List the affected samples and dilution factor in the table below.

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION	
		THE RESERVE OF THE PROPERTY OF	
-			
	1		
		2.00	

If dilution was not performed, affected samples/compounds:		sults (J) for	the affected	compounds.	List the
					